
State Complexity of Chromatic Memory in
Infinite-Duration Games
Alexander Kozachinskiy #

IMFD Chile & CENIA Chile

Abstract
We study finite-memory strategies in games over edge-colored graphs. Usually, these strategies
are defined using finite automata that have a set of edges as an input alphabet. However, several
recent results in strategy complexity are only known for finite-memory strategies that use chromatic
memory (meaning that this means that these strategies do not distinguish edges of the same colors).
We study the cost of transforming general finite-memory strategies into strategies with chromatic
memory.

For every winning condition and every game graph with n nodes, we show the following. If this
game graph has a winning strategy with q states of general memory, then it also has a winning
strategy with (q + 1)n states of chromatic memory. We also show that this bound is almost tight.
For every q and n, we construct a winning condition and a game graph with n + 3 nodes such that
(a) there exists a winning strategy with q states of general memory, (b) there exists no winning
strategy with less than qn states of chromatic memory.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases games on graphs, finite-memory strategies, self-verifying automata

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Games on graphs are a standard tool in many areas of computer science, from decidability
of logical theories [7] to reactive synthesis [1]. This situation raises various questions for
games on graphs, and one of them is strategy complexity. In strategy complexity, one seeks
to understand which winning conditions admit “simple” winning strategies (meaning that
whenever you have a winning strategy, you also have a simple one). In this paper, we study
one of the standard complexity measure of strategies – their memory.

Games in question are played over edge-colored graphs, with winning conditions defined
as sets of infinite sequences of colors. During the game, two players move a token over nodes
of a graph along its edges. We focus on infinite-duration turn-based games. “Infinite-duration”
means that the game proceeds for infinitely many turns, giving us an infinite sequence of
colors. Whether or not this sequence belongs to the winning condition determines who is
the winner of the play. Now, “turn-based” means that in each turn, one of the players fully
controls the token (there is a predetermined partition of the nodes between the players).

We are interested in strategies with finite memory. They are defined through so-called
memory structures. A memory structure is a finite automaton whose input alphabet is the
set of edges of the graph. Whenever the token passes an edge, this edge is fed to the memory
structure. A strategy, built on top of a memory structure M, makes its decisions based on
two things – first, the current node, and second, the current state of M. When a strategy
can be built on top of some memory structure with q states, we say that this strategy has q

states of general memory.
There is a specific class of memory structures called chromatic memory structures. These

are memory structures that do not distinguish edges of the same color. They can be presented
as finite automata not over the set of edges but over the set of colors. This makes them more
uniform than general memory structures – one chromatic memory structure can be used in

© A. Kozachinskiy;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.kozachinskyi@cenia.cl
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 State Complexity of Chromatic Memory in Infinite-Duration Games

different game graphs. Another reason to consider them is that our winning conditions are
defined solely in terms of colors. Thus, they collect only those information which is directly
related to a winning condition. When a strategy can be built on top of some chromatic
memory structure with q states, we say that this strategy has q states of chromatic memory.

We study the cost of transforming strategies with general memory into strategies with
chromatic memory. More specifically, for a given game graph G and a winning condition
W , we study the relationship between the following two parameters. The first one, Qgen, is
the minimal q for which in G there exists a strategy with q states of general memory, which
is winning w.r.t. W . The second one, Qchr, is defined similarly, but with “general memory”
replaced by “chromatic memory”.

There are two motivations of this problem. First, several results in strategy complexity
are known only for strategies with chromatic memory. For example, Kopczyński [4] gave
an algorithm, computing chromatic memory requirements of prefix-independent ω-regular
winning conditions. No such algorithm is known for general memory requirements. In turn,
Bouyer et al. [6] obtained a characterization of winning conditions, for which there exists
some constant q such that both players need at most q of states of chromatic memory in all
games graphs. Again, no such characterization is known for general memory. This situation
motivates studying the relationship between chromatic and general memory more deeply.

Second, there is a connection to self-verifying automata. A self-verifying automaton is a
non-deterministic automaton with the following property: for every input word either there
exists an accepting run or a rejecting run, but not both. In [3], Jirásková and Pighizzini
study the cost of transforming a self-verifying automaton into an equivalent deterministic
automaton. As we discuss below, this is a special instance of the problem that we study
in this paper. More specifically, given a self-verifying automaton A, the minimal size of
an equivalent deterministic automaton equals the minimal number of states of chromatic
memory, needed to simulate a certain strategy with 2 states of general memory (played over
a transition graph of A).

Results.
Let us go back to the relationship between Qgen and Qchr. Since every strategy with q

states of chromatic memory is also a strategy with q states of general memory, we have
Qgen ≤ Qchr. The following bound in the other direction was obtained by Le Roux [5]:

Qchr ≤ 2Qgen·(n2+1),

where n is the number of nodes of the underlying game graph. Our first result is the following
improvement of this bound:

Qchr ≤ (Qgen + 1)n.

Note that our bound is no longer exponential in Qgen. This shows that there is no much
difference between chromatic and general memory, when one of them is at least exponential
in n. This applies, for example, to energy parity conditions [2].
▶ Remark 1. Le Roux establishes his upper bound for concurrent games. Our upper holds
for concurrent games as well. However, we only present the argument for turn-based games,
for two reasons: (1) the argument is less technical in the turn-based case; (2) the difference
between general and chromatic memory has been mostly studied for turn-based games.

We also show that our upper bound is tight. Namely, for every n and q we provide
a winning condition W and a game graph G with n + 3 nodes, such that Qgen ≤ q and
Qchr ≥ qn. To obtain this separation, we adapt technique from self-verifying automata.

A. Kozachinskiy 23:3

Unfortunately, our upper bound is unsatisfactory for winning conditions, where Qgen is
small in n (for example, independent of n). A future work might be to search classes of
winning conditions, for which our upper bound can be further improved.

The rest of the paper is organized as follows. In Section 2 we give preliminaries. In
Section 3 we give exact statements and a technical overview of our results. In Section 4 we
prove our main upper bound. In Appendix A we prove our lower bound. In Appendix B, we
establish a version of our upper bound for preference relations.

2 Preliminaries

Notation. For a set A, we let A∗ (resp., Aω) stand for the set of all finite (resp., infinite)
sequences of elements of A. For x ∈ A∗, we let |x| denote the length of x (we also set
|x| = +∞ for x ∈ Aω). We write A = B ⊔ C for three sets A, B, C when A = B ∪ C and
B ∩ C = ∅. We let ◦ denote the function composition. The set of positive integral numbers
is denoted by Z+.

2.1 Arenas
We call our players Protagonist and Antagonist. Graphs over which they play are called
arenas.

▶ Definition 2. Let C be any set. A tuple A = ⟨V, VP , VA, E⟩, where V, VP , VA, E are four
finite sets such that V ̸= ∅, V = VP ⊔ VA and E ⊆ V × C × V , is called an arena over the
set of colors C if for every s ∈ V there exist c ∈ C and t ∈ V such that (s, c, t) ∈ E.

Elements of V will be called nodes of A. Elements of VP and VA will be called Protagonist’s
nodes and Antagonist’s nodes, respectively. Elements of E will be called edges of A. For
an edge e = (s, c, t) ∈ E, we define source(e) = s, col(e) = c and target(e) = t. We imagine
e ∈ E as an arrow, colored into col(e) and going from source(e) to target(e).

We extend the function col to a function col : E∗ ∪ Eω → C∗ ∪ Cω by setting:

col(e1e2e3 . . .) = col(e1)col(e2)col(e3) . . . , e1, e2, e3, . . . ∈ E.

A non-empty sequence p = e1e2e3 . . . ∈ E∗ ∪Eω is called a path if for every 1 ≤ i < |p| we
have target(ei) = source(ei+1). We set source(p) = source(e1) and, if p is finite, target(p) =
target(e|p|). For technical convenience, for every node v ∈ V we define a 0-length path λv

with source(λv) = target(λv) = v.
We will concatenate paths. Non-empty paths are just sequences of edges. So if p and q are

two non-empty paths, their concatenations pq is defined in the usual way. However, pq is a
path if and only if p is finite and target(p) = source(q). We also have to define concatenation
for 0-length paths. For every v ∈ V , we set λvq = q if source(q) = v. Otherwise, λvq is
undefined. Similarly, we let qλv = q if q is finite and target(q) = v. Otherwise, qλv is
undefined.

2.2 The game
Let A = ⟨V, VP , VA, E⟩ be an arena over the set of colors C. We define a game, associated
with A. The set of positions of the game is the set of finite paths in A. Next, take a finite
path p. Protagonist is the one to move from p if and only if target(p) ∈ VP . The set of moves,
available to Protagonist at p, is the set of out-going edges of target(p), i.e., the set of e ∈ E

CVIT 2016

23:4 State Complexity of Chromatic Memory in Infinite-Duration Games

with source(e) = target(p) (by definition of an arena, this set is non-empty). If Protagonist
plays an edge e in the position p, the next position is pe. Antagonist plays similarly in
positions with source(p) ∈ VA. The game can start in an arbitrary node v (more formally,
possible starting positions are paths λv, v ∈ V). We assume that it continues for infinitely
many turns, giving us some infinite path.

A Protagonist’s strategy maps each position, from where Protagonist is the one to move,
to some move, available at this position. Antagonist’s strategies are defined likewise, but we
do not mention them in this paper.

We use the following notation. For u ∈ V and for a Protagonist’s strategy S, we let
InfPlays(S, u) be the set of infinite paths P = (e1, e2, e3, . . .) that can be obtained in a play
with S from u. Formally, P can be obtained in a play with S from u if source(P) = u and if
the following holds:

u ∈ VP =⇒ S(λu) = e1;
for every i ≥ 1, we have that target(ei) ∈ VP =⇒ S(e1 . . . ei) = ei+1.

Additionally, we define col(S, u) = col
(
InfPlays(S, u)

)
. In other words, col(S, u) is the set of

all infinite sequences of colors that can be obtained in a play with S from the node u. For
U ⊆ V , we define col(S, U) =

⋃
u∈U col(S, u).

2.3 Winning conditions and preference relations
A winning condition is any set W ⊆ Cω. We say that a Protagonist’s strategy S is winning
from u ∈ V w.r.t. to W if col(S, u) ⊆ W . In other words, any infinite play from u against S

must give a sequence of colors from W .
We also consider a more general class of objectives called preference relations. A preference

relation is a total preorder1 ⊑ on the set Cω. Intuitively, when given a preference relation ⊑,
the goal of Protagonist is to maximize the sequence of colors w.r.t. ⊑.

Any two strategies S1, S2 of Protagonist can be compared w.r.t. ⊑ (from the Protagonist’s
perspective). Namely, we say that S2 is no worse than S1 from u ∈ V if for every β ∈ col(S2, u)
there exists α ∈ col(S1, u) such that α ⊑ β. In other words, if the game starts at u, then for
any play with S2 there exists a play with S1, which is the same w.r.t. ⊑ or worse.

It is instructive to observe that the relation “no worse from u” over Protagonist’s strategies
is a total preorder. Transitivity and reflexivity is immediate. To show totality, assume for
contradiction that there are two Protagonist’s strategies such that two statements “S2 is no
worse than S1 from u” and “S1 is no worse than S2 from u” are both false. Hence, there exists
β2 ∈ col(S2, u) such that α ̸⊑ β2 for all α ∈ col(S1, u). Similarly, there exists β1 ∈ col(S1, u)
such that α ̸⊑ β1 for all α ∈ col(S2, u). Comparing β1 and β2, we get a contradiction with
the totality of ⊑.

2.4 Memory structures
Let A = ⟨V, VP , VA, E⟩ be an arena over the set of colors C. A memory structure in A is a
tuple M = ⟨M, minit, δ⟩, where M is a finite set, minit ∈ M and δ : M × E → M . In other
words, a memory structure M is a deterministic finite automaton whose input alphabet is
the set of edges of A. Thus, M serves as the set of states of our memory structure, minit

serves as its initial state, and δ as its transition function. Given m ∈ M , we inductively

1 A total preorder is a transitive and reflexive binary relation which is “total” in a sense that for every
a, b from its domain, either (a, b) or (b, a) belongs to it.

A. Kozachinskiy 23:5

extend the function δ(m, ·) to arbitrary finite sequences of edges as follows:

δ(m, empty sequence) = m,

δ(m, e1e2 . . . en+1) = δ(δ(m, e1 . . . en), en+1), n ≥ 1, e1, e2, . . . , en+1 ∈ E.

Thus, δ(m, p) for p ∈ E∗ is the state into which our memory structure comes from the state
m after reading p.

We say that a memory structure M = ⟨M, minit, δ⟩ is chromatic if there exists a function
σ : M ×C → M such that δ(m, e) = σ(m, col(e)) for every e ∈ E and m ∈ M . In other words,
chromatic memory structures do not distinguish edges of the same color. Correspondingly, it
will be sometimes convenient to view chromatic memory structures as finite automata over
the set C (and not over the set of edges of A).

Let S be a Protagonist’s strategy and M = ⟨M, minit, δ⟩ be a memory structure. We
say that S is an M-strategy if for any two paths p1, p2 with target(p1) = target(p2) ∈ VP it
holds that:

δ(minit, p1) = δ(minit, p2) =⇒ S(p1) = S(p2)

In other words, if S is an M-strategy, then the value of S(p) for an M-strategy S solely
depends on target(p) and on δ(minit, p). Sometimes, to avoid overusing formulas, we will
refer to δ(minit, p) as the state of S after p.

With any M-strategy S one can associate the next-move function of S. This is a function
nS : VP × M → E, defined as follows: to determine nS(v, m), we take an arbitrary finite path
p with target(p) = v and δ(minit, p) = m, and set nS(v, m) = S(p). If there is no such path
p at all, we define nS(v, m) arbitrarily. Less formally, nS(v, m) is the move of S from the
node v when the state of S is m. Note that the next-move function completely determines
the corresponding strategy. For the sake of brevity, in the paper we will use the same letter
for a strategy and for its next-move function. That is, when S is an M-strategy, we use
the letter S in two different ways. First, S(p) denotes the move of S after a finite path p.
Second, S(v, m) for v ∈ VP , m ∈ M denotes the value of the next-move function of S on the
pair (v, m).

We say that S is a strategy with q states of general memory if S is an M-strategy for
some memory structure M with q states. If M is chromatic, we say that S is a strategy
with q states of chromatic memory.

3 Technical Overview

3.1 An example
We start with a simple example, where there is a gap between general and chromatic memory.
More specifically, we give a winning condition and an arena, where (a) there is a winning
strategy of Protagonist with 2 states of general memory, (b) there is no winning strategy of
Protagonist with 2 states of chromatic memory. The arena is depicted below.

All nodes are controlled by Protagonist. The set of colors is C = {S, D}, where S means
“solid” and D means “dashed”. Consider a winning condition W ⊆ Cω, consisting of all
sequences from Cω that have SSSSS (the letter S five times) as a subword. Assume that
the game starts at u.

Protagonist has the following winning strategy: go to v, then go to the cycle, then, after
returning to v, go to the right. This is a strategy with 2 states of general memory. Indeed,
consider a memory structure with 2 states: “have not been to v” and “have been to v”. It

CVIT 2016

23:6 State Complexity of Chromatic Memory in Infinite-Duration Games

u v

Figure 1 An example.

switches from the first state to the second state after receiving any edge starting at v. The
only choice our strategy has is at v. In the state “have not been to v”, it goes to the cycle.
In the state “have been to v”, it goes to the right.

We now argue that there is no winning strategy of Protagonist with 2 states of chromatic
memory. Assume for contradiction that such strategy exists. First it goes to v, as there is
no other choice. Let q1 be its state when it reaches v. If it then goes to the right, it loses.
So it has to go to the cycle. When it returns to v, it is in some state q2. If q1 = q2, then
our strategy stays on the cycle forever and hence loses. Therefore, q1 ≠ q2. However, the
memory structure of our strategy is chromatic. In other words, it can be presented as a
deterministic finite automaton (DFA) over C. Now, q1 is the state of this automaton on the
word DDSS, and q2 is the state of this automaton on the word DDSSDDSSSS. It can
be checked via the computer search that no DFA with 2 states can distinguish DDSS and
DDSSDDSSSS.

3.2 Upper bounds
The exact statement of our main upper bound is the following

▶ Theorem 3. For any n, q ∈ Z+ the following holds. Consider an arbitrary arena A =
⟨V, VP , VA, E⟩ with n nodes, an arbitrary set U ⊆ V , and an arbitrary Protagonist’s strategy
S1 with q states of general memory in this arena. Then there exists a Protagonist’s strategy
S2 with (q + 1)n states of chromatic memory such that col(S2, U) ⊆ col(S1, U).

It should not be confusing that this theorem does not mention winning conditions. One
can notice that col(S1, U) is the minimal winning condition w.r.t. which S1 is winning from all
nodes of U . So, if S1 and S2 are as in Theorem 3, and W is a winning condition w.r.t. which
S1 is winning from all nodes of U , then S2 is also winning w.r.t. W from all nodes of U .
That is, we obtain the following corollary.

▶ Corollary 4. Let W ⊆ Cω be any winning condition. Then for any n, q ∈ Z+ the following
holds. Take any n-node arena A and any Protagonist’s strategy S1 with q states of general
memory in it. Then in A there exists a Protagonist’s strategy S2 with (q + 1)n states of
chromatic memory such that for every node v of A the following holds: if S1 is winning from
v w.r.t. W , then so is S2.

A. Kozachinskiy 23:7

Proof. Apply Theorem 3 to the set U of nodes from where S1 is winning w.r.t. W . ◀

We also obtain an analog of Corollary 4 for preference relations. For that, we first
establish the following technical result:

▶ Theorem 5. For any n, q ∈ Z+, for any arena A = ⟨V, VP , VA, E⟩ with n nodes, for any
total preorder ⪯ on the set V and for any Protagonist’s strategy S1 with q states of general
memory in A, there exists a Protagonist’s strategy S2 with (qn + 1)n states of chromatic
memory such that for any v ∈ V we have:

col(S2, v) ⊆
⋃

u∈V,v⪯u

col(S1, u).

▶ Corollary 6. Let ⊑ be any preference relation on Cω. Then for any n, q ∈ Z+ the following
holds. Take any n-node arena A and any Protagonist’s strategy S1 with q states of general
memory in A. Then there exists a Protagonist’s strategy S2 with (qn+1)n states of chromatic
memory such that, for every node v of A, we have that S2 is at least as good as S1 w.r.t. ⊑
from v.

Let us discuss why do we need slightly more states in Corollary 6 than in Corollary 4. The
reason is that we want S2 to be as good as S1 from every node of A. When we were dealing
with winning condition, we could just forget about the nodes where S1 is not winning. Now
there is a finer classification of the nodes, depending on what Protagonist can achieve in
these nodes w.r.t. ⊑, and it is slightly harder to deal with this classification.

Let us now formally derive Corollary 6 from Theorem 5.

Proof of Corollary 6. We write u ⪯ v for two nodes u, v of A if for any β ∈ col(S1, v) there
exists α ∈ col(S1, u) such that α ⊑ β. Let us verify that ⪯ is a total preorder on the set V

of nodes of A. The transitivity of ⪯ follows from the transitivity ⊑. The reflexivity of ⪯
is obvious. Now we show the totality of ⪯, that is, we show that u ̸⪯ v =⇒ v ⪯ u. Since
u ̸⪯ v, there exists β ∈ col(S1, v) such that α ̸⊑ β for every α ∈ col(S1, u). By the totality of
⊑, we have β ⊑ α for every α ∈ col(S1, u). This implies that v ⪯ u.

We then apply Theorem 5 to ⪯. Consider the resulting strategy S2. We show, for every
v ∈ V , that S2 is at least as good as S1 w.r.t. ⊑ from v. That is, we show, for every
β ∈ col(S2, v), that there exists α ∈ col(S1, v) with α ⊑ β. By the conclusion of Theorem 5,
we have that β belongs to col(S1, u) for some v ⪯ u. By definition of ⪯, there exists some
α ∈ col(S1, v) such that α ⊑ β, as required. ◀

3.3 A lower bound
Finally, the exact statement of our lower bound, showing tightness of Theorem 3, is the
following:

▶ Theorem 7. For any n, q ∈ Z+ there exists an arena A with n + 3 nodes, a node u of A
and a Protagonist’s strategy S1 with q states of general memory such that for any Q and
for any Protagonist’s strategy S2 with Q states of chromatic memory the following holds:
col(S2, u) ⊆ col(S1, u) =⇒ Q ≥ qn.

Our argument has a connection to a work of Jirásková and Pighizzini [3] on self-verifying
automata. It turns out that from one of their results one can directly derive a weaker version
of Theorem 7. Namely, one can get an arena with n + O(1) nodes and a Protagonist’s
strategy with 2 states of general memory such that for some node u of this arena the

CVIT 2016

23:8 State Complexity of Chromatic Memory in Infinite-Duration Games

following holds: if S2 is a Protagonist’s strategy with Q states of chromatic memory such
that col(S2, u) ⊆ col(S1, u), then Q = Ω(3n/2). We show this derivation below in this section.
Of course, when S1 has 2 states, Theorem 7 gives a better bound Q = Ω(2n), let alone
that q can be arbitrary in Theorem 7). In fact, for the strong version of Theorem 7 it is
not sufficient to use results of Jirásková and Pighizzini as a black box – we have to slightly
modify their construction. The full proof of Theorem 7 is given in Appendix A.

Sketch of the proof of Theorem 7 (weak version). Consider a non-deterministic finite auto-
maton A which, in addition to the set of accepting states, has a set of rejecting states which
is disjoint from the set of accepting states. Such an automaton is self-verifying if for every
finite word w, exactly one of the following two statements is true:

there exists a run of A on w which ends in an accepting state;
there exists a run of A on w which ends in a rejecting state.

The language, recognized by such an automaton, consists of all finite words for which the
first statement is true. The complement of this language consists of all words for which the
second statement is true.

For every n ∈ N, Jirásková and Pighizzini construct a self-verifying automaton An with
n states such that any deterministic automaton, recognizing the same language as An, has
Ω(3n/2) states (they also show that this bound is tight). Using An, we construct an arena
with n + O(1) nodes and a Protagonist’s strategy with 2 states of general memory such that
for some node u of this arena the following holds: if S2 is a Protagonist’s strategy with Q

states of chromatic memory such that col(S2, u) ⊆ col(S1, u), then Q = Ω(3n/2).
Namely, consider the transition graph of An; it can be viewed as an arena with edges

colored by the input letters of An. Assume that Antagonist is the one to move everywhere
in this transition graph. Now, add a node t controlled by Protagonist. Draw edges to t from
all accepting and rejecting states of An. Color all these edges into a new color #. Finally,
take two more new colors c and d, and draw two edges from t to the initial state of An, one
colored by c, and the other one by d. Let u be the initial state of An.

Consider the following Protagonist’s strategy S1. The only node where S1 has to do
something is t. If we come to t from an accepting state, then S1 goes to u via the c-colored
edge. Otherwise, S1 goes to u via the d-colored edge. Note that S1 is a strategy with 2 states
of general memory – it only needs to remember whether the last edges in the current play
starts at an accepting state of An.

Assume now that there is a Protagonist’s strategy S2 with Q states of chromatic memory
such that col(S2, u) ⊆ col(S1, u). Its memory structure can be presented as a deterministic
finite automaton with Q states whose input alphabet contains the input alphabet of An and
also #, c and d. We show this memory structure recognizes the language of An (below, we
denote this language by L(An)). This means that Q = Ω(3n/2).

Assume for contradiction that there are two words w1 ∈ L(An), w2 /∈ L(An) over the
input alphabet of An such that the memory structure of S2 comes into the same state on
them. Notice that, for every word w over the input alphabet of An, Antagonist has a path
from u to t, colored by w#. Indeed, for any w there is a run over w which brings us to an
accepting or to a rejecting state, from where we can go to t by a #-colored edge. In particular,
there are 2 paths from u to t that are colored by w1# and w2#. Note that S2 does the same
thing after these two paths because its memory structure does not distinguish w1 and w2.
Assume that at this moment S2 goes to u via the c-colored edge (if it goes via the d-colored
edge, the argument is the same). This means that col(S2, u) has some infinite sequence,
starting with w2#c. Due to the fact that col(S2, u) ⊆ col(S1, u), this infinite sequence can
be obtained in some play with S1. Since we have c after # in this play, we came to t via

A. Kozachinskiy 23:9

some accepting state. This means that there exists an accepting run for w2. On the other
hand, since w2 /∈ L(An), there exists a rejecting run for w2. This is a contradiction, because
An is self-verifying. ◀

As we indicated in the introduction, this argument, for every self-verifying automaton
A, establishes equality of the following two parameters: (a) the minimal number of states
in a deterministic finite automaton, recognizing the same language as A, (b) the minimal
Q for which there exists a strategy S2 with Q states of chromatic memory such that
col(S2, u) ⊆ col(S1, u) (where u and S1 are constructed from A as above).

4 Proof of Theorem 3

Let M = ⟨M, minit, δ⟩ be the memory structure of S1. We have that |M | = q. The set of
states of S2 will be the set of functions f : V → M ∪ {⊥}, where ⊥ /∈ M . Thus, S2 will be a
(q + 1)n-state strategy. The initial state of S2 is the function finit : V → M ∪ {⊥},

finit(v) =
{

minit v ∈ U,

⊥ otherwise

We will define S2 in such a way that for any finite path p the following holds. Assume
that p is consistent with S2 and source(p) ∈ U . Let f : V → M ∪ {⊥} be the state of S2 after
p. Then we have the following two properties called soundness and completeness:

(soundness) for any v ∈ V , if f(v) = m ̸= ⊥, then there exists a finite path p1 with
source(p1) ∈ U, target(p1) = v, such that, first, p1 is consistent with S1, second, col(p1) =
col(p), and third, δ(minit, p1) = m.
(completeness) f(target(p)) ̸= ⊥.

Let us first show that for any S2 with these properties we have col(S2, U) ⊆ col(S1, U).
For that it is sufficient to establish the following. Let P be an arbitrary infinite path such
that P is consistent with S2 and source(P) ∈ U . Then there exists an infinite path P1 such
that P1 is consistent with S1, source(P1) ∈ U and col(P1) = col(P).

Take an arbitrary v ∈ V . Consider an infinite tree of all finite paths from v that are
consistent with S1. Now, delete from this tree all paths that are inconsistent with the coloring
of P . That is, we delete a path q if col(q) ̸= col(p), where p is a prefix of P with |p| = |q|.
Let the resulting tree be Tv.

It is sufficient to show that for some v ∈ U , there is an infinite branch in Tv. By Kőnig’s
lemma, we have this as long as there exists v ∈ U such that Tv is infinite (since we consider
only finite arenas, Tv has finite branching for every v). To show this, we show that for any
k ∈ Z+ there exists v ∈ U such that Tv has a node of depth k. Indeed, let p be a prefix of
P of length k. Since P is consistent with S2, so is p. Moreover, source(p) = source(P) ∈ U .
Let f : V → M ∪ {⊥} be the state of S2 after reading p. By the completeness property, we
have f(target(p)) = m ̸= ⊥. By the soundness property, there exists a finite path p1 with
source(p1) ∈ U such that p1 is consistent with S1 and col(p1) = col(p). Observe then that p1
is a depth-k node of Tsource(p1).

We now show how to define S2 with properties as above. We first describe the transition
function of the memory structure of S2. This memory structure has to be chromatic. So
when its transition function receives an edge, it will only use the color of this edge to produce
a new state.

Assume the current state of this memory structure is f : V → M ∪ {⊥}, and it receives
an edge whose color is c ∈ C. We determine the new state g : V → M ∪ {⊥} according to the

CVIT 2016

23:10 State Complexity of Chromatic Memory in Infinite-Duration Games

following algorithm. To determine g(v) for v ∈ V , we introduce a notion of a (f, v, c)-good
edge. An edge e ∈ E is (f, v, c)-good if

target(e) = v, col(e) = c and f(source(e)) ̸= ⊥; (1)
if source(e) ∈ VP , then e = S1

(
source(e), f(source(e))

)
. (2)

If no (f, v, c)-good edge exists, we set g(v) = ⊥. Otherwise, we take an arbitrary (f, v, c)-good
edge e and set g(v) = δ

(
f(source(e)), e

)
.

We now describe the next-move function of S2. Consider an arbitrary state f : V →
M ∪ {⊥} of S2 and an arbitrary node v ∈ VP . Define S2(v, f) as follows. Assume first that
f(v) ̸= ⊥. Then set S2(v, f) = S1

(
v, f(v)

)
. If f(v) = ⊥, define S2(v, f) arbitrarily.

Definition of S2 is finished. It remains to verify that it satisfies the soundness and the
completeness properties. We show this by induction on the length of p.

We start with the induction base. Assume that p is a 0-length path (then it is automatically
consistent with any strategy) and that source(p) ∈ U . We have to check the soundness
and the completeness properties for p and for the initial state finit. Let us start with the
soundness. If finit(v) ̸= ⊥, then, by definition, v ∈ U and finit(v) = minit. Therefore, we can
set p1 = λv. As for the completeness, we have finit(source(p)) ̸= ⊥ because source(p) ∈ U .

We now perform the induction step. Assume that we have verified the soundness and
the completeness properties for all paths of length k. We extend this to paths of length
k + 1. Consider any path p = p′e′ of length k + 1. Here e′ ∈ E is the last edge of p so that
p′ is of length k. Assume that p is consistent with S2 and source(p) ∈ U . Then p′ is also
consistent with S2 and source(p′) = source(p) ∈ U . Let f be the state of S2 after p′. By the
induction hypothesis, we have that the soundness and the completeness hold for p′ and f .
Now, let g : V → M ∪ {⊥} be the state of S2 after p. Alternatively, g is the state into which
the memory structure of S2 transits from the state f when it receives e′. Let c = col(e′) be
the color of e′.

We first show that p and g satisfy the soundness property (see Figure 2).

v

w

w

v

w

w

e′ e

p′ p′
1

U

p p1

Figure 2 The argument for the soundness.

Consider any v ∈ V such that g(v) ̸= ⊥. There must be an (f, v, c)-good edge. Let
e be an (f, v, c)-good edge which was used to determine g(v). Denote w = source(e).
By (1), we have f(w) ̸= ⊥. Hence, by the soundness for p′ and f , there exists a finite
path p′

1 with source(p′
1) ∈ U, target(p′

1) = w, such that (a) p′
1 is consistent with S1; (b)

A. Kozachinskiy 23:11

col(p′
1) = col(p′); (c) δ(minit, p′

1) = f(w). Set p1 = p′
1e. Since target(p′

1) = w = source(e),
we have that p1 is a path. We show that p1 verifies the soundness property for g(v).
Obviously, source(p1) = source(p′

1) ∈ U . Since e is (f, v, c)-good, we have by (1) that
target(e) = v. Hence, target(p1) = target(e) = v. Let us now check that p1 is consistent
with S1. This is obvious if w = target(p′

1) ∈ VA, because p′
1 is consistent with S1. Now,

if w = target(p′
1) ∈ VP , we have to show that e = S1(p′

1). Since f(w) = δ(minit, p′
1) is

the state of S1 after p′
1, we have S1(p′

1) = S1(w, f(w)). In turn, since e is (f, v, c)-good,
by (2) we have S1(w, f(w)) = S1

(
source(e), f(source(e))

)
= e. It remains to show that

col(p1) = col(p) and δ(minit, p1) = g(v). Indeed, col(p1) = col(p′
1e) = col(p′

1)col(e) =
col(p′)c = col(p′)col(e′) = col(p′e′) = col(p). Here we use a fact that col(e) = c due to (1). In
turn, δ(minit, p1) = δ(minit, p′

1e) = δ(δ(minit, p′
1), e) = δ(f(w), e). It remains to recall that

by definition, g(v) = δ(f(source(e)), e) = δ(f(w), e).
Now we show that p and g satisfy the completeness property. In other words, we show

that g(target(p)) ̸= ⊥. By definition, this holds as long as there exists an (f, target(p), c)-good
edge. We claim that e′, the last edge of p, is (f, target(p), c)-good. Let us first verify that
e′ satisfies (1). Obviously, target(e′) = target(p). Now, col(e′) = c by definition. Finally, we
have f(source(e′)) = f(target(p′)) ̸= ⊥ due to the completeness property for p′ and f . Let us
now check that e′ satisfies (2). Assume that source(e′) = target(p′) ∈ VP . Since p is consistent
with S2, we have e′ = S2(p′). Now, by definition, f is the state of S2 after p′. Therefore,
e′ = S2(p′) = S2(target(p′), f) = S2(source(e′), f). Again, since the completeness property
holds for p′ and f , we have f(source(e′)) = f(target(p′)) ̸= ⊥. Hence, by definition of S2, we
have that e′ = S2(source(e′), f) = S1

(
source(e′), f(source(e′))

)
. Thus, (2) is established for

e′.

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and reactive

synthesis. In Handbook of Model Checking, pages 921–962. Springer, 2018.
2 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoretical Computer

Science, 458:49–60, 2012.
3 Galina Jirásková and Giovanni Pighizzini. Optimal simulation of self-verifying automata by

deterministic automata. Information and Computation, 209(3):528–535, 2011.
4 Eryk Kopczyński. Half-positional determinacy of infite games. PhD thesis, Warsaw University,

2008.
5 Stéphane Le Roux. Time-aware uniformization of winning strategies. In Conference on

Computability in Europe, pages 193–204. Springer, 2020.
6 Pierre Vandenhove, Mickael Randour, Youssouf Oualhadj, Stéphane Le Roux, and Patricia

Bouyer. Games where you can play optimally with arena-independent finite memory. Logical
Methods in Computer Science, 18, 2022.

7 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

A Proof of Theorem 7

Let A = ⟨V, VP , VA, E⟩ be as on Figure 3.
We define S1 as follows. Its memory structure maintains a number count ∈ {0, 1, . . . , q−1}.

Initially, count = 0. When the memory structure of S1 passes through any y-colored edge, it
increments count by 1 modulo q. In turn, when we go from v0 to vn, it sets count = 0. In all
the other cases, the value of count does not change. It remains to define how S1 acts at t

(this is the only node from where Protagonist is the one to move). There are two edges from

CVIT 2016

23:12 State Complexity of Chromatic Memory in Infinite-Duration Games

vn . . . v2 v1 v0

u

t
x x x x

z z
z

z

y y y y

x

c

d

z

Figure 3 Arena A. The set of colors is C = {x, y, z, c, d}. The partition of the nodes between
the players is given by VP = {t}, VA = {u, v0, v1, . . . , vn}.

t, both go to v0, but one is c-colored and the other is d-colored. If count = 0, then S1 uses
the c-colored edge. If count ̸= 0, then S1 uses the d-colored edge.

For brevity, if p is a finite path in A, then by count(p) we denote the value of count after
p.

We need the following definition and the following lemma about paths in the arena A.

▶ Definition 8. Define a function f : {x, y}∗ → {0, 1, . . . , q − 1} as follows. Take any
w ∈ {x, y}∗. To define f(w), first define a word w′ ∈ {x, y}∗. Namely, if w has at most n

occurrences of x, then set w′ = w. Otherwise, take the (n + 1)st occurrence of x from the
right, erase it and everything to its left, and let the remaining word be w′. Finally, let f(w)
be the number of y’s in w′ modulo q.

▶ Lemma 9. For any w ∈ {x, y}∗ the following holds:
(a) there exists a finite path p with source(p) = u, target(p) = t and col(p) = zwz;
(b) for any finite path p, if source(p) = u and col(p) = zwz, then target(p) = t and

count(p) = f(w).

Proof. Let X be the number of occurrences of x in w. Set i to be the remainder of X when
divided by n + 1.

We start by showing (a). To construct p, we first go from u to vi. Then we start
reading letters of w one by one from left to right. Every time we read a new letter, we
move from our current location via some edge colored by this letter. It remains to show
that after reading the whole w we end up in v0, which has an out-going z-colored edge to t.
Indeed, if we forget about y’s, then we are just rotating counterclockwise along the cycle
vn → . . . → v1 → v0 → vn. The length of this cycle is n + 1, and the distance from vi to v0,
measured counterclockwise, is i. Thus, since in w there are X ≡ i (mod n + 1) occurrences
of x, we end up in v0.

We now show (b). Consider any finite path p with source(p) = u and col(p) = zwz.
Observe that once we left u, it is impossible to come back to it again. Therefore, since the
last edge of p is z-colored, this edge must be from v0 to t. Hence, target(p) = t.

It remains to show that count(p) = f(w). Assume first that p never goes from v0 to
vn. Then count(p) is the number of y’s modulo q in w, because col(p) = zwz. Thus, to

A. Kozachinskiy 23:13

show that count(p) = f(w) in this case, it is enough to show X ≤ n. Indeed, the first edge
of p is from u to vj , for some j ∈ {0, 1, . . . , n}. Then it makes X steps along the cycle
vn → . . . → v1 → v0 → vn. If X were at least n + 1, then p had to go from v0 to vn at least
once, contradiction.

Now, assume that p contains edges from v0 to vn. By definition, count(p) equals the
number of y-colored edges in p modulo q after the last time p went from v0 to vn. To show
that count(p) = f(w), we have to show that the number of x-colored edges in p after the
last time p went from v0 to vn is n (then the last edge from v0 to vn in p corresponds to the
(n + 1)st occurrence of x in w from the right). Indeed, as we discussed above, the last edge
of p must be from v0 to t. Obviously, if we go from vn to v0 without going to vn again after
this, then the number of times we pass an x-colored edge is exactly n.

◀

This gives the following fact about the set col(S1, u).

▶ Corollary 10. For any w ∈ {x, y}∗ the following holds. If zwzc is a prefix of some sequence
from col(S1, u), then f(w) = 0. In turn, if zwzd is a prefix of some sequence from col(S1, u),
then f(w) ̸= 0.

Proof. Fix h ∈ {c, d}. Take any w ∈ {x, y}∗ such that zwzh is a prefix of some sequence of
col(S1, u). We show that h = c ⇐⇒ f(w) = 0.

By definition of col(S1, u), there exists a finite path p with source(p) = u, col(p) = zwzh

which is consistent with S1. Let p1 be the part of p which precedes its last edge. Since
source(p1) = u and col(p1) = zwz, we have by the item (b) of Lemma 9 that target(p1) = t

and count(p1) = f(w).
The node t is controlled by Protagonist. Hence, since p is consistent with S1, the last

edge of p must be equal to S1(p1). The color of S1(p1) is h. In turn, count(p1) is the
state of S1 after p1. Therefore, by definition of S1, the color of S1(p1) is c if and only if
count(p1) = f(w) = 0. The lemma is proved. ◀

Consider any Q ∈ Z+ and any Protagonist’s strategy S2 with Q states of chromatic
strategy such that col(S2, u) ⊆ col(S1, u). We show that Q ≥ qn. Note that S2 is an
M-strategy for some chromatic memory structure M = ⟨M, minit ∈ M, δ : M × E → M⟩.
By definition of chromatic memory structures, there exists some σ : M × {x, y, z, c, d} → M

such that

δ(m, e) = σ(m, col(e)), m ∈ M, e ∈ E. (3)

To show that Q ≥ qn, in Lemma 12 we provide qn words from {x, y, z, c, d}∗ such that
σ(minit, ·) must take different values on these words.

▶ Definition 11. Let g : {0, 1, . . . , q − 1}n → {x, y}∗ be the following function:

g : (i1, i2, . . . , in) 7→ xyi1xyi2 . . . xyin .

▶ Lemma 12. For any κ1, κ2 ∈ {0, 1, . . . , q−1}n such that κ1 ̸= κ2 we have σ(minit, zg(κ1)) ̸=
σ(minit, zg(κ2)).

To establish Lemma 12, we first need the following lemma.

▶ Lemma 13. For any κ1, κ2 ∈ {0, 1, . . . , q − 1}n such that κ1 ̸= κ2 there exists a word
w ∈ {x, y}∗ such that f(g(κ1)w) = 0 and f(g(κ2)w) ̸= 0.

CVIT 2016

23:14 State Complexity of Chromatic Memory in Infinite-Duration Games

Proof. Assume that κ1 = (i1, i2, . . . , in) and κ2 = (j1, . . . , jn). Take the largest k ∈
{1, 2, . . . , n} such that ik ≠ jk. Let r ∈ {0, 1, . . . , q−1} be such that ik +ik+1 +. . .+in +r ≡ 0
(mod q). Define w = xkyr. Thus,

g(κ1)w = xyi1xyi2 . . . xyik . . . xyinxkyr,

g(κ2)w = xyj1xyj2 . . . xyjk . . . xyjnxkyr.

Observe that the (n+1)st occurrence of x in g(κ1)w is one before yik . Similarly, the (n+1)st
occurrence of x in g(κ2)w is one before yjk . Hence, by definition of f , we have:

f(g(κ1)w) ≡ ik + ik+1 + . . . + in + r (mod q),
f(g(κ2)w) ≡ jk + jk+1 + . . . + jn + r (mod q).

By definition of r, we have f(g(κ1)w) = 0. In turn, by definition of k, we have ik ̸= jk and
ik+1 = jk+1, . . . , in = jn. The numbers ik, jk are different elements of {0, 1, . . . , q − 1}, which
means that their difference is not divisible by q. Hence, f(g(κ2)w) ̸= f(g(κ1)w) = 0. ◀

To conclude the proof of the theorem, it remains to derive Lemma 12 from Lemma 13.

Proof of Lemma 12. Assume for contradiction that

σ(minit, zg(κ1)) = σ(minit, zg(κ2)) (4)

for some κ1, κ2 ∈ {0, 1, . . . , q − 1}n, κ1 ̸= κ2. By Lemma 13 there exists w ∈ {x, y}∗ such
that

f(g(κ1)w) = 0, f(g(κ2)w) ̸= 0. (5)

By the item (a) of Lemma 9 there exist two finite paths p1 and p2 such that

source(p1) = source(p2) = u,

target(p1) = target(p2) = t,

col(p1) = zg(κ1)wz, col(p2) = zg(κ2)wz.

The paths p1 and p2 do not have c, d-colored edges. That is, they do not have edges
that start at t. This means that these paths are consistent with S2. We claim that
S2(p1) = S2(p2). Indeed, since S2(p) is determined by target(p) and δ(minit, p). Now,
target(p1) = target(p2) = t. It remains to show that δ(minit, p1) = δ(minit, p2). By (3), it is
sufficient to show that σ(minit, col(p1)) = σ(minit, col(p2)) This follows from (4) because:

σ(minit, col(p1)) = σ(minit, zg(κ1)wz) = σ(minit, zg(κ2)wz) = σ(minit, col(p2)).

So let e = S2(p1) = S2(p2). The paths p1e and p2e are both consistent with S2. Since
col(S2, u) ⊆ col(S1, u), we have that col(p1e) is a prefix of some sequence from col(S1, u),
and so is col(p2e). This gives a contradiction with Corollary 10. Indeed, assume first that
col(e) = c. Then col(p2e) = zg(κ2)wzc is a prefix of some sequence from col(S1, u), but
f(g(κ2)w) ̸= 0 by (5), contradiction. Similarly, if col(e) = d, then col(p1e) = zg(κ1)wzd is a
prefix of some sequence from col(S1, u), but f(g(κ1)w) = 0 by (5), contradiction. ◀

A. Kozachinskiy 23:15

B Proof of Theorem 5

Let M = ⟨M, minit, δ⟩ be the memory structure of S1. We have that |M | = q. The set of
states of S2 will be the set of functions f : V → V ×M ∪{⊥}, where ⊥ /∈ V ×M . Thus, S2 is a
strategy with (qn+1)n states. The initial state of S2 is the function finit : V → V ×M ∪{⊥},
defined by f(v) = (v, minit) for every v ∈ V .

We use the following notation in the proof. Take any f : V → V × M ∪ {⊥} and v ∈ V ,
and assume that f(v) = (u, m) ̸= ⊥. Then we set f1(v) = u and f2(v) = m. That is, f1 is
the projection of f to the first coordinate (its values are nodes of our arena) and f2 is the
projection of f to the second coordinate (its values are states of S1). If f(v) = ⊥, we set
f1(v) = f2(v) = ⊥.

Our goal is to define S2 in a such a way that, for any finite path p which is consistent
with S2, and for the state f of S2 after p, the following holds:

(soundness) for any v ∈ V , if f(v) ̸= ⊥, then there exists a finite path p1 from f1(v)
to v such that, first, p1 is consistent with S1, second, col(p1) = col(p), and third,
δ(minit, p1) = f2(v).
(completeness) f(target(p)) ̸= ⊥ and source(p) ⪯ f1(v).

It is not hard to see that for any S2 with these properties we have

col(S2, v) ⊆
⋃

u∈V,v⪯u

col(S1, u).

Indeed, to establish this, we have to show that for any infinite path P which is consistent with
S2 there exists an infinite path P1 which is consistent with S1 such that col(P) = col(P1) and
source(P) ⪯ source(P1). For this we define the trees Tv, v ∈ V as in the proof of Theorem 3.
By Kőnig’s lemma, it is sufficient to show that Tu is infinite for some u with source(P) ⪯ u.
We take an arbitrary finite prefix p of P . Since p is consistent with S2, from the completeness
we get that f(target(p)) ̸= ⊥. By applying the soundness to the node target(p), we get a
finite path p1 from f1(target(p)) to target(p) such that, first, p1 is consistent with S1, and
second, col(p1) = col(p). Hence, p1 is a node of Tf1(target(p)). Moreover, by the completeness
we have source(P) = source(p) ⪯ f1(target(p)). Thus, for some u with source(P) ⪯ u there is
a node of depth |p| in Tu. It remains to note that |p| can be arbitrarily large.

We now explain how to define S2 in a way which guaranties the soundness and the
completeness properties. We start with the transition function of S2. Assume that the
current state of S2 is f : V → V × M ∪ {⊥}, and then it receives an edge whose color is c. We
define the new state g : V → V × M ∪ {⊥} as follows (we stress that S2 has to be chromatic,
so g will be a function of f and c). Take any v ∈ V for which we want to determine g(v).
Note that f2 : V → M ∪ {⊥}. If there is no (f2, v, c)-good edge, in a sense of (1–2), then we
set g(v) = ⊥. Otherwise, we take an (f2, v, c)-good edge e, maximizing f1(source(e)) w.r.t. ⪯,
and set g1(v) = f1(source(e)), g2(v) = δ(f2(source(e)), e).

We now define the next-move function of S2. Let f : V → V × M ∪ {⊥} be a state and
v ∈ VP be a node of Protagonist. If f(v) ̸= ⊥, we set S2(v, f) = S1(v, f2(v)). Otherwise, we
define S2(v, f) arbitrarily.

It remains to establish the soundness and the completeness properties for all finite paths
p that are consistent with S2. As before, we do so by induction on |p|.

We start with the induction base. Assume that |p| = 0. The initial state of S2 is the
function finit. Recall that we have finit(v) = (v, minit) for every v ∈ V . So, to establish
the soundness, we can set p1 = λv for every v ∈ V . For the completeness, observe that

CVIT 2016

23:16 State Complexity of Chromatic Memory in Infinite-Duration Games

finit(target(p)) = (target(p), minit) ̸= ⊥ and, obviously, source(p) ⪯ target(p) (just because p

is a 0-length path so that source(p) = target(p)).
Let us now perform the induction step. Assume that our claim is proved for all p of

length up to k. Take any p = p′e′ of length k + 1 which is consistent with S2. Here e′ is the
last edge of p. Then p′ is consistent with S2 and has length k. Hence, we have the induction
hypothesis for p′ and for a function f : V → V × M ∪ {⊥} which is the state of S2 after p′.
Next, let the state of S2 after p be g : V → V × M ∪ {⊥}. Note that g is the value of the
transition function of S2 on f and c = col(e′) ∈ C.

To check the soundness for p and g, one can use exactly the same argument as in Theorem
3 for f2 and g2. That is, for any v ∈ V with g(v) ̸= ⊥, we consider an (f2, v, c)-good edge e

which was used to define g(v). By (1), we have f2(source(e)) ̸= ⊥ =⇒ f(source(e)) ̸= ⊥.
Then, using the induction hypothesis for p′, we take a path p′

1 establishing the soundness for
f and p′ at source(e). Finally, we define p1 = p′

1e and show that p1 establishes the soundness
for g and p at v. Obviously, p1 is a path to v. By the same routine check as in the proof
of Theorem 3, we have that, first, p1 is consistent with S1, second, col(p1) = col(p), and
third, δ(minit, p1) = g2(v). The only thing we have to additionally check is that p1 starts in
g1(v). Indeed, by definition, g1(v) = f1(source(e)). Note that p′

1 is a prefix of p1, so these
paths have the same starting node. In turn, since p′

1 establishes the soundness for f and p′

at source(e), the starting node of p′
1 must be f1(source(e)) = g1(v), as required.

We now check the completeness property for p and g. It is sufficient to show the existence
of an (f2, target(p), c)-good edge e with source(p) ⪯ f1(source(e)). Indeed, g(target(p)) ̸=
⊥ if and only if (f2, target(p), c)-good edges exist, and g1(target(p)) is the maximum of
f1(source(e)) w.r.t. ⪯ over such edges.

We claim that e′, the last edge of p, satisfies these conditions. To show this, recall that
by the induction hypothesis we have the completeness for p′ and f . Let us first demonstrate
that e′ satisfies (1) for f2, v = target(p) and c. Indeed, target(e′) = target(p) because e′

is the last edge of p, col(e′) = c by definition of c, and f2(source(e′)) = f2(target(p′)) ̸=
⊥ by the completeness for p′ and f . Let us now verify (2). Assume that source(e′) ∈
VP . Then, since p = p′e′ is consistent with S2, we have e′ = S2(p′). The state of S2
after p′ is f , so S2(p′) = S2(target(p′), f) = S2(source(e′), f). Note that f(source(e′)) =
f(target(p′)) ̸= ⊥ by the completeness for p′ and f . Hence, by definition of S2, we have
S2(source(e′), f) = S1(source(e′), f2(source(e′)), and, thus, e′ satisfies (2). Finally, we have
to show that source(p) ⪯ f1(source(e)). This is because, by the completeness for p′ and
f , we have source(p′) ⪯ f1(target(p′)). It remains to note that source(p) = source(p′) and
source(e′) = target(p′) – recall that e′ is the last edge of p and p′ is the part of p which
precedes e′.

	1 Introduction
	2 Preliminaries
	2.1 Arenas
	2.2 The game
	2.3 Winning conditions and preference relations
	2.4 Memory structures

	3 Technical Overview
	3.1 An example
	3.2 Upper bounds
	3.3 A lower bound

	4 Proof of Theorem 3
	A Proof of Theorem 7
	B Proof of Theorem 5

